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Abstract 
MUSE transforms everyday activity into continuous, 

context-appropriate music by coupling an on-device 
activity‐understanding encoder with a cloud-hosted 
MusicGen [4] decoder. An mobile-class edge device 
ingests wrist-worn inertial and heart-rate signals, encodes 
the user’s current activity into interpretable semantics, 
and injects encodings into prompts sent to remote 
MusicGen-small model workers. A high-speed 
bi-directional WebSocket pipeline streams 
autoregressively generated audio fragments back to the 
client as they’re generated , where an asynchronous mixer 
stitches overlapping chunks for gap-free playback. The 
original semester goal of edge-situated ML is met with the 
Jetson Nano utilized as a stand-in for modern wearable 
mobile computers(eg Apple Watch[7]); quantitative signal 
encoder accuracy and end-to-end streaming fall within 
range of project goals, enabling flexible activity-sensitive 
musical expression as a step towards a new paradigm of 
human-computer interaction. Remaining challenges 
involve prompt-to-prompt timbral smoothing and 
streaming latency improvements. 
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1. Introduction 

Music consumption is largely passive: playlists, 
radio-style recommendation and skip-based control. Yet 
cognitive-affective research shows rhythmic entrainment 
and semantic congruence between music and physical 
state enhance performance, mood and immersion.  

Meanwhile, parallel computing capabilities have 
massively expanded in the age of AI (AlexNet in 2012). 
Figure 1a displays a histogram of GPU capability 
improvements; speedups and storage both continue to 
massively increase. Similarly, mobile device parallel 
processing storage has followed the same trend, enabling 
advanced local machine learning tasks at the 
human-machine interface. [12] 

Figure 1.1a: Performance History (half-precision TOPS) 
of Graphics Processing Units used in Deep Learning 

Figure 1.1b: iPhone GPU Storage History 

MUSE forms a closed loop between physiological 
activity and live generative audio, enabling 
preconditioned “be your own soundtrack” experiences for 
fitness, productivity and rehabilitation applications. 

Technical hurdles include (i) low-latency on-device 
activity understanding, (ii) high-quality audio generation 
under compute & bandwidth limits, and (iii) seamless 
streaming with inaudible transitions. We address these by 
splitting computation: a lightweight CNN/SigLIP2 
encoder runs on the edge device (modeled with Jetson 
Nano), while a GPU VM hosts MusicGen. A proxy-relay 
architecture decouples unreliable wireless links from the 
real-time audio stream. 



 

2. Summary of Prior Development 
 Although no single paper proves out a complete paradigm 
shift at this capacity, three seminal works underpin MUSE 
generative streaming technology: 

2.1 Fundamental Technology Developments 

MusicGen (Meta/Facebook, 2023) - an autoregressive 
transformer that conditions 32 kHz waveform generation 
on text prompts via an EnCodec tokenizer and a T5-style 
text encoder. MusicGen-small consists of 256M 
parameters & scores well on opinion-based quality 
benchmarks, with larger models also available. The 
system is an autoregressive generator, so is a prime option 
for fragment streaming. [4] 

Musicgen-Streaming [5] (Gandhi & HuggingFace, 
2024) - Introduced Musicgen-streaming, a lightweight 
iterator that yields playback-ready PCM every play_steps 
decoding iterations, achieving sub-second first-token 
latency without modifying model weights or internal 
structure. We adopt the same fragment assembly logic 
(token cache → delay-pattern mask → PCM) and modify 
it for asynchronous WebSocket delivery and dynamic 
play_steps tuning on our GPU VM. 

SigLIP2 (Google Research, 2024) - a vision-language 
model that replaces softmax contrastive loss with a 
Sigmoid contrastive objective, improving 
embedding-space training at wide batch size varieties 
(useful for low-resource training systems). The work’s 
open-source checkpoints and model size 
flexibility(90M-1B params) make it ideal for edge-cloud 
network prototyping.  [6] 

 

2.2 Key Results of the Original Papers 

MusicGen-small achieves MOS ≈ 4.0 on the MAESTRO 
test-set while running in <8 GB VRAM. SigLIP2-base 
attains 78 % zero-shot top-1 on ImageNet-1K using 90 M 
params and fp16 weights. MusicGen-streaming reaches 
consistent (no lags) audio streaming from an 
H200-enabled VM with a wide variety of play_steps.  

SigLIP (and simpler CNN-based systems) can effectively 
encode multi-channel signal data into semantic 
representations.  

These results demonstrate that small models suffice for 
high-quality audio generation and multimodal semantic 
alignment under real-time application constraints. 

3. Methodology 

3.1. Objectives and Technical Challenges 

Objective Target Challenge & 
Mitigation 

Real-time 
activity 
encoding on 
Edge Device 
(Jetson Nano) 

Semantic Output 
with variability 
between planned 
activities 

CNN w/0.5M params 

SigLIP w/MusicGen 
embedding latents 

Minimize 
stream lags 

Set up workers to 
build up queue 
until new-prompt 
generation 
complete 

Local vs VM GPU; 
Cloud offloading, 
“play-steps” modif. in 
MusicGen streamer 

Seamless 
Prompt 
Transitions 

Opinion-Eval: 
fine-grained, 
subtle shifts 

Overlapping, 
Embedding Encoder, 
Context provision 

 

3.2  High-Level Development Methodology 

MUSE is developed as a user-oriented product. Simple 
utility and smooth experience is prioritized in long-term 
implementation & architecture/network scaling.  

Testing Data for this study is obtained from UC Irvine’s 
PPG+Dalia wearable sensor dataset, described further in 
implementation. Long-term test data should be acquired 
through utility-oriented wearable & mobile devices. 

 
Figure 3.2.1: WatchOS Data Acquisition GUI (simulated) 

 



 

4. Implementation 
In accordance with the e6692 course project 

requirements and timeline, this initial MUSE study uses 
an NVIDIA Jetson Nano to mimic a modern wearable 
computing device. Semantic data encoding, tested 
primarily with a custom lightweight CNN, is performed 
on the Jetson. Encoded information is injected into a 
custom prompt (with engineered base features for 
transition smoothing) & offloaded to a high-capacity 
Virtual Machine for music generation. With generation & 
streaming rates higher than real-time consumption, a 
prompt-specific music fragment queue is built up & 
drawn upon for music on the local player device. Sorted 
fragments are played in real-time & saved for qualitative 
analysis. 

4.1 Utility Data 

Dynamic multi-modal datastream in MUSE utility is 
to be collected from the wearable mobile device. Dynamic 
data in this project includes three-dimensional 
accelerometer data and heart-rate. Scripting is established 
to pull data from Apple WatchOS (GUI in Fig. 3.1) to 
stream to local machine, but personal data collection & 
usage is out of scope of this study. Static Data is limited to 
age, sex, height & weight in this study. 

Train & Test Dataset: PPG-Dalia wrist-worn 
multimodal dataset — 128 k s across 15 subjects, 9 
annotated activities (walking, cycling outdoors, climbing 
stairs, working at desk, lunch break, driving a car, sitting 
and reading, transition). 

Pre-processing: 8-second samples of 3-dim 
accelerometer data are resampled to 64 Hz and translated 
to 64×64 log-mel spectrograms (Fig. 4.1a/b) via 
AccelToRGBMel utility, then augmented with sliding 
windows (stride = 2 s) for a total of 65k training frames. 
Heart Rate samples are taken per-frame in this study, but 
heart-rate context may also be provided. 

 

 
Figure 4.1a: Single-Channel Mel Spectrogram (Colorized) 
Encompassing 30s of Frequency - Mel Power Data. 

 
Figure 4.1b: RGB-Channelled Mel Spectrogram of Accel. 
8-sec frames used as input to multimodal data encoders. 

4.2  Deep Learning Architectures 

This study employs a signal-semantic encoder(used 
primarily as classification) to prompt the pretrained 
MusicGen system. Encoder training is performed on a 
local machine w/RTX 4070 gpu (8GB gpu memory, 15.6 
fp16 TOPS). Train/val split is 80 / 20, stratified by 
subject.  

The primary data encoder used in this study is a 
lightweight Convolutional Neural Network (Fig. 4.2.1) 
which incorporates multichannel accelerometer 
spectrogram maps and pseudo-static data (per-frame 
heart-rate + indiv. statics). Three standard convolutional 
blocks process frame spectrograms and feed to a series of 
two shared linear layers, totalling only 500k parameters. 
Outputs are trained with conventional Cross-Entropy loss 
(Results Fig. 5.1.1). 



 

 

 

Figure 4.2.1: Convolutional Deep-Learning Classification 
Encoder. Pseudo-static data fed into intermediate FC 
layers. Output classes correspond to activity semantics.  

SigLIP is also proposed as a longer-term multimodal 
encoder(Fig. 4.2.2). MusicGen embeds semantic prompts 
into 768-dimensional Flan T5 text embeddings; as a step 
towards a signal-MusicGen integrated encoder with signal 
encoder embeddings as direct MusicGen inputs, we train 
SigLIP on annotation class T5 embeddings. This system 
likely does not zero-shot generalize beyond the class 
tokens due to the narrowness of training spread, but future 
systems will utilize such implementations with more 
varied training sets. See Results Fig.   5.1.2 for initial 
training.

Figure 3.3.2: SigLIP Comparative Paradigm. Sigmoid 
losses provide classification-style rewards, helping 
converge training over a variety of batch sizes [6]. 
 

 

 

 

4.3  Compute Network & Streaming Design 

On the edge device, data is encoded into semantics and 
sent to the local “player/client” device (laptop in testing), 
where it’s immediately injected into user-customized 
stylistic semantic prompts and sent into the cloud(GCP). 
Customization details in Appendix Fig. A.2.1. 

Example Prompt: “Chill techno music. Current activity: 
Working at Desk. The listener is 34 years old, 182 cm tall, 
and weighs 78.0 kg. Heart rate is 64 bpm. Compose music 
that reflects the listeners style and physiological state. The 
track should begin with a seamless lead-in, evolving 
naturally from previous activity and ending naturally for 
the next activity.”  

New prompts are accepted on the Virtual Machine 
(Figure 4.3.2), triggering a MusicGen worker deployment 
to generate successive music fragments until the following 
prompt’s worker is deployed. These fragments are placed 
in a streaming queue and sent back to a local 
“player/client” machine, where the queue is parsed & 
chronological music is played. As discussed in Results, 
music may have lags due to unsatisfactory MusicGen 
inference throughput; stitched chronological music is also 
saved to a .wav file. 

 
Figure 4.3.1: High-Level MUSE Network Diagram 

 
Figure 4.3.2: Virtual Machine Workflow 



 

 

5. Development Results 

5.1  Encoder Training & Deployment 

Custom CNN classifier training (Figure 5.1.1) is very 
successful, reaching ~85% accuracy within 25 training 
epochs. SigLIP training (Figure 5.1.2) quickly converges 
to a steady loss, but shows no marked improvement 
beyond the first few training batches. 

Both the custom CNN and SigLIP are trained as proof 
of concept, but only the CNN is deployed on the Jetson 
for this study: SigLIP is useful as a proven system for 
generating class embeddings; in a high-frequency 
prompting pipeline (utilizing base prompt embeddings as 
opposed to text semantics), this system would likely 
provide smoother transitions between MusicGen 
deployment segments. Without modifying the forward 
pass of MusicGen’s base-code, however, our scope is 
limited such that the lightweight, highly-performant CNN 
classifier is used. 

 
Figure 5.1.1 a/b: CNN Training Plots 
Upper: Cross-Entropy Loss. Lower: Classfn. Accuracy 

 

 
Figure 5.1.2: SigLIP Initial Training (Sigmoid Loss). 
System quickly converges to consistent loss over 9 
classes; unused for this study due to added evaluation 
complexity w/out embedding-input justification. 

5.2  MUSE Realtime Deployment 

Qualitatively, the current MUSE implementation 
demonstrates promising results. Individual generation 
passes are largely(>90%) good-quality, but transitions 
provide a challenge amidst the standard MusicGen 
forward-pass. Even with very similar prompts, including 
fadein/fadeout commands, pronounced timbral jumps 
occur between consecutive segments, exposing the need 
for further work on embedded prompt smoothing & 
context provision. In short, the prototype proves 
feasibility on legacy GPUs yet highlights a trade-off 
between hardware spend and perceptual polish that must 
be weighed against the addressable market. 

Running MusicGen-small in fp16 on an NVIDIA V100 
with 0.5-2.5-second fragments yields workable but 
slightly laggy performance (~10% fragment lengths). 
Below 0.35sec fragment lengths, communication lags 
begin to dominate. Newly-prompted audio arrives about 
1.5 fragment-lengths after the edge sends the prompt, a 
delay that can be compensatorily reduced with fragment 
length and covered by built-in queue buildup/runout on 
A100/H100-class VM hardware. Lags are acceptable for 
testing, where stitched data can be saved for annotation, 
but is unacceptable for casual listening. Aside from VM 
compute power-ups, samples may also be globally 
stretched (~0.8x slomo) to cover lags and prepare a short 
queue for prompt switches. 
 



 

5.3 Development Challenges 

●​MusicGen Location: Runs on local machine, but slow, 
low scalability. Forced onto VM. 

●​MusicGen Input: requires text, doesn’t take context 
without extensive under-the-hood work. Limited scope to 
semantic classification prompt injection. 

●​Encoder Inference: Jetson Nano locally runs Python 3.6 
and comparatively outdated versions of Pytorch/Cuda, so 
pipeline adaptations must be carefully made to avoid 
offline training to Jetson inference congruence. 

●​Prompt Engineering: Transition disparity effects can be 
partially smoothed with careful lead-in/out commands & 
transition timing alignment. See appendix A.2.1 for 
detailed prompt info. 

●​Network Streaming: Three-node streaming proves 
challenging for queue / worker management. Without 
effective queue & worker dynamics, asynchronous threads 
produce disordered queue on transitions. Streaming 
system centrally facilitated by local streaming client 
(music player). 
 
5.4  Discussion / Insights Gained  

Through CNN & initial SigLIP training results, smooth 
activity-sensitive semantic prompting has proven to be a 
manageable goal, but even with careful base prompt 
engineering, affecting smooth transitions will likely 
require forward-pass modification to MusicGen’s decoder 
context tokens to accept previous-segment context tokens. 

6. Future Work (Ordered by Priority) 

●​ Smooth Activity Transitions: previous-context 
provision to token-audio decoder (MusicGen fork) 

●​ Latency Minimization: Increase VM compute power 
(ex streaming app: H200 w/800 fp16 TOPS! [5]). 
Investigate communication costs & network variants. 

●​ Product Design: Value vs Cost Study, Addressable 
Markets & Technology Orientation. Monetization. 

●​ Build out Data Acquisition w/target device (Fig. 6.1) 
●​ Develop SigLIP variational inference: train w/acquired 

data, introduce synthetic chaos in annotations. 
●​ Fine-grained sensitivity: Encoder+prompt embedding 

input as opposed to text prompt (large-scale SigLIP 
training, MusicGen fork): Smooth encoder embedding 
changes (as opposed to stark transitions in activity 
classifications) will produce more subtle differences in 
MusicGen passes while maintaining interpretability. 

●​ Personalized fine-tuning: engagement/feedback RL 
●​ Activity deviance detection & query initiation (Stat. / 

DL frameworks) for large-scale streaming 
 

7. Conclusion  
Development progress on MUSE validates the 

feasibility of real-time, activity-aware music generation 
on a split edge–cloud stack. This study effectively meets 
the primary academic study goals: A custom 
0.5M-parameter CNN running on a Jetson Nano reliably 
classifies nine wrist-sensor activities at ~85 % macro-F1, 
prompting MusicGen-small to stream activity-sensitive 
music into a local device, limiting new-activity to 
new-music latency to roughly 1.5s on a V100 (likely 
below 0.75s on newer A100/H100 GPUs). The system is 
structured to deliver uninterrupted playback through 
queue management & overlap-additive mixing, promoting 
nimble edge-situated ML-driven activity entrainment. 
Although limitations to transition smoothness and stream 
lags currently exist, paths forward on both fronts have 
been identified to guarantee that MUSE will usher in a 
new paradigm of user-sensitive musical expression. 
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8. Appendix 

8.1 Individual Student Contribution 

Liam McHugh (lm3963) completed all work individually. 

 

8.2 Support  Material 

 
Figure A.2.1 Prompt Style Customizations.  
 
A.2.2 Complete Example Prompt: 
“Chill techno music. Current activity: Working at Desk. The 
listener is 34 years old, 182 cm tall, and weighs 78.0 kg. Heart 
rate is 64 bpm. Compose music that reflects the listeners style 
and physiological state. The track should begin with a seamless 
lead-in, evolving naturally from previous activity and ending 
naturally for the next activity.” See Appendix Fig. A.2.1 for 
customization details 

 

 

 

Figure A.2.3 MusicGen Quantization & Storage Reqs 


