

MUSE: Mobile User-Sensitive musical Expression
E6692.2022Spring.MUSE.report.lm3963

Liam McHugh, lm3963
Columbia University

Abstract
MUSE transforms everyday activity into continuous,

context-appropriate music by coupling an on-device
activity‐understanding encoder with a cloud-hosted
MusicGen [4] decoder. An mobile-class edge device
ingests wrist-worn inertial and heart-rate signals, encodes
the user’s current activity into interpretable semantics,
and injects encodings into prompts sent to remote
MusicGen-small model workers. A high-speed
bi-directional WebSocket pipeline streams
autoregressively generated audio fragments back to the
client as they’re generated , where an asynchronous mixer
stitches overlapping chunks for gap-free playback. The
original semester goal of edge-situated ML is met with the
Jetson Nano utilized as a stand-in for modern wearable
mobile computers(eg Apple Watch[7]); quantitative signal
encoder accuracy and end-to-end streaming fall within
range of project goals, enabling flexible activity-sensitive
musical expression as a step towards a new paradigm of
human-computer interaction. Remaining challenges
involve prompt-to-prompt timbral smoothing and
streaming latency improvements.

Keywords: Entrainment, MusicGen, SigLIP, Pulse Code
Modulation (PCM), Mel Spectrogram, Websocket

1. Introduction

Music consumption is largely passive: playlists,
radio-style recommendation and skip-based control. Yet
cognitive-affective research shows rhythmic entrainment
and semantic congruence between music and physical
state enhance performance, mood and immersion.

Meanwhile, parallel computing capabilities have
massively expanded in the age of AI (AlexNet in 2012).
Figure 1a displays a histogram of GPU capability
improvements; speedups and storage both continue to
massively increase. Similarly, mobile device parallel
processing storage has followed the same trend, enabling
advanced local machine learning tasks at the
human-machine interface. [12]

Figure 1.1a: Performance History (half-precision TOPS)
of Graphics Processing Units used in Deep Learning

Figure 1.1b: iPhone GPU Storage History

MUSE forms a closed loop between physiological
activity and live generative audio, enabling
preconditioned “be your own soundtrack” experiences for
fitness, productivity and rehabilitation applications.

Technical hurdles include (i) low-latency on-device
activity understanding, (ii) high-quality audio generation
under compute & bandwidth limits, and (iii) seamless
streaming with inaudible transitions. We address these by
splitting computation: a lightweight CNN/SigLIP2
encoder runs on the edge device (modeled with Jetson
Nano), while a GPU VM hosts MusicGen. A proxy-relay
architecture decouples unreliable wireless links from the
real-time audio stream.

2. Summary of Prior Development
 Although no single paper proves out a complete paradigm
shift at this capacity, three seminal works underpin MUSE
generative streaming technology:

2.1 Fundamental Technology Developments

MusicGen (Meta/Facebook, 2023) - an autoregressive
transformer that conditions 32 kHz waveform generation
on text prompts via an EnCodec tokenizer and a T5-style
text encoder. MusicGen-small consists of 256M
parameters & scores well on opinion-based quality
benchmarks, with larger models also available. The
system is an autoregressive generator, so is a prime option
for fragment streaming. [4]

Musicgen-Streaming [5] (Gandhi & HuggingFace,
2024) - Introduced Musicgen-streaming, a lightweight
iterator that yields playback-ready PCM every play_steps
decoding iterations, achieving sub-second first-token
latency without modifying model weights or internal
structure. We adopt the same fragment assembly logic
(token cache → delay-pattern mask → PCM) and modify
it for asynchronous WebSocket delivery and dynamic
play_steps tuning on our GPU VM.

SigLIP2 (Google Research, 2024) - a vision-language
model that replaces softmax contrastive loss with a
Sigmoid contrastive objective, improving
embedding-space training at wide batch size varieties
(useful for low-resource training systems). The work’s
open-source checkpoints and model size
flexibility(90M-1B params) make it ideal for edge-cloud
network prototyping. [6]

2.2 Key Results of the Original Papers

MusicGen-small achieves MOS ≈ 4.0 on the MAESTRO
test-set while running in <8 GB VRAM. SigLIP2-base
attains 78 % zero-shot top-1 on ImageNet-1K using 90 M
params and fp16 weights. MusicGen-streaming reaches
consistent (no lags) audio streaming from an
H200-enabled VM with a wide variety of play_steps.

SigLIP (and simpler CNN-based systems) can effectively
encode multi-channel signal data into semantic
representations.

These results demonstrate that small models suffice for
high-quality audio generation and multimodal semantic
alignment under real-time application constraints.

3. Methodology

3.1. Objectives and Technical Challenges

Objective Target Challenge &
Mitigation

Real-time
activity
encoding on
Edge Device
(Jetson Nano)

Semantic Output
with variability
between planned
activities

CNN w/0.5M params

SigLIP w/MusicGen
embedding latents

Minimize
stream lags

Set up workers to
build up queue
until new-prompt
generation
complete

Local vs VM GPU;
Cloud offloading,
“play-steps” modif. in
MusicGen streamer

Seamless
Prompt
Transitions

Opinion-Eval:
fine-grained,
subtle shifts

Overlapping,
Embedding Encoder,
Context provision

3.2 High-Level Development Methodology

MUSE is developed as a user-oriented product. Simple
utility and smooth experience is prioritized in long-term
implementation & architecture/network scaling.

Testing Data for this study is obtained from UC Irvine’s
PPG+Dalia wearable sensor dataset, described further in
implementation. Long-term test data should be acquired
through utility-oriented wearable & mobile devices.

Figure 3.2.1: WatchOS Data Acquisition GUI (simulated)

4. Implementation
In accordance with the e6692 course project

requirements and timeline, this initial MUSE study uses
an NVIDIA Jetson Nano to mimic a modern wearable
computing device. Semantic data encoding, tested
primarily with a custom lightweight CNN, is performed
on the Jetson. Encoded information is injected into a
custom prompt (with engineered base features for
transition smoothing) & offloaded to a high-capacity
Virtual Machine for music generation. With generation &
streaming rates higher than real-time consumption, a
prompt-specific music fragment queue is built up &
drawn upon for music on the local player device. Sorted
fragments are played in real-time & saved for qualitative
analysis.

4.1 Utility Data

Dynamic multi-modal datastream in MUSE utility is
to be collected from the wearable mobile device. Dynamic
data in this project includes three-dimensional
accelerometer data and heart-rate. Scripting is established
to pull data from Apple WatchOS (GUI in Fig. 3.1) to
stream to local machine, but personal data collection &
usage is out of scope of this study. Static Data is limited to
age, sex, height & weight in this study.

Train & Test Dataset: PPG-Dalia wrist-worn
multimodal dataset — 128 k s across 15 subjects, 9
annotated activities (walking, cycling outdoors, climbing
stairs, working at desk, lunch break, driving a car, sitting
and reading, transition).

Pre-processing: 8-second samples of 3-dim
accelerometer data are resampled to 64 Hz and translated
to 64×64 log-mel spectrograms (Fig. 4.1a/b) via
AccelToRGBMel utility, then augmented with sliding
windows (stride = 2 s) for a total of 65k training frames.
Heart Rate samples are taken per-frame in this study, but
heart-rate context may also be provided.

Figure 4.1a: Single-Channel Mel Spectrogram (Colorized)
Encompassing 30s of Frequency - Mel Power Data.

Figure 4.1b: RGB-Channelled Mel Spectrogram of Accel.
8-sec frames used as input to multimodal data encoders.

4.2 Deep Learning Architectures

This study employs a signal-semantic encoder(used
primarily as classification) to prompt the pretrained
MusicGen system. Encoder training is performed on a
local machine w/RTX 4070 gpu (8GB gpu memory, 15.6
fp16 TOPS). Train/val split is 80 / 20, stratified by
subject.

The primary data encoder used in this study is a
lightweight Convolutional Neural Network (Fig. 4.2.1)
which incorporates multichannel accelerometer
spectrogram maps and pseudo-static data (per-frame
heart-rate + indiv. statics). Three standard convolutional
blocks process frame spectrograms and feed to a series of
two shared linear layers, totalling only 500k parameters.
Outputs are trained with conventional Cross-Entropy loss
(Results Fig. 5.1.1).

Figure 4.2.1: Convolutional Deep-Learning Classification
Encoder. Pseudo-static data fed into intermediate FC
layers. Output classes correspond to activity semantics.

SigLIP is also proposed as a longer-term multimodal
encoder(Fig. 4.2.2). MusicGen embeds semantic prompts
into 768-dimensional Flan T5 text embeddings; as a step
towards a signal-MusicGen integrated encoder with signal
encoder embeddings as direct MusicGen inputs, we train
SigLIP on annotation class T5 embeddings. This system
likely does not zero-shot generalize beyond the class
tokens due to the narrowness of training spread, but future
systems will utilize such implementations with more
varied training sets. See Results Fig. 5.1.2 for initial
training.

Figure 3.3.2: SigLIP Comparative Paradigm. Sigmoid
losses provide classification-style rewards, helping
converge training over a variety of batch sizes [6].

4.3 Compute Network & Streaming Design

On the edge device, data is encoded into semantics and
sent to the local “player/client” device (laptop in testing),
where it’s immediately injected into user-customized
stylistic semantic prompts and sent into the cloud(GCP).
Customization details in Appendix Fig. A.2.1.

Example Prompt: “Chill techno music. Current activity:
Working at Desk. The listener is 34 years old, 182 cm tall,
and weighs 78.0 kg. Heart rate is 64 bpm. Compose music
that reflects the listeners style and physiological state. The
track should begin with a seamless lead-in, evolving
naturally from previous activity and ending naturally for
the next activity.”

New prompts are accepted on the Virtual Machine
(Figure 4.3.2), triggering a MusicGen worker deployment
to generate successive music fragments until the following
prompt’s worker is deployed. These fragments are placed
in a streaming queue and sent back to a local
“player/client” machine, where the queue is parsed &
chronological music is played. As discussed in Results,
music may have lags due to unsatisfactory MusicGen
inference throughput; stitched chronological music is also
saved to a .wav file.

Figure 4.3.1: High-Level MUSE Network Diagram

Figure 4.3.2: Virtual Machine Workflow

5. Development Results

5.1 Encoder Training & Deployment

Custom CNN classifier training (Figure 5.1.1) is very
successful, reaching ~85% accuracy within 25 training
epochs. SigLIP training (Figure 5.1.2) quickly converges
to a steady loss, but shows no marked improvement
beyond the first few training batches.

Both the custom CNN and SigLIP are trained as proof
of concept, but only the CNN is deployed on the Jetson
for this study: SigLIP is useful as a proven system for
generating class embeddings; in a high-frequency
prompting pipeline (utilizing base prompt embeddings as
opposed to text semantics), this system would likely
provide smoother transitions between MusicGen
deployment segments. Without modifying the forward
pass of MusicGen’s base-code, however, our scope is
limited such that the lightweight, highly-performant CNN
classifier is used.

Figure 5.1.1 a/b: CNN Training Plots
Upper: Cross-Entropy Loss. Lower: Classfn. Accuracy

Figure 5.1.2: SigLIP Initial Training (Sigmoid Loss).
System quickly converges to consistent loss over 9
classes; unused for this study due to added evaluation
complexity w/out embedding-input justification.

5.2 MUSE Realtime Deployment

Qualitatively, the current MUSE implementation
demonstrates promising results. Individual generation
passes are largely(>90%) good-quality, but transitions
provide a challenge amidst the standard MusicGen
forward-pass. Even with very similar prompts, including
fadein/fadeout commands, pronounced timbral jumps
occur between consecutive segments, exposing the need
for further work on embedded prompt smoothing &
context provision. In short, the prototype proves
feasibility on legacy GPUs yet highlights a trade-off
between hardware spend and perceptual polish that must
be weighed against the addressable market.

Running MusicGen-small in fp16 on an NVIDIA V100
with 0.5-2.5-second fragments yields workable but
slightly laggy performance (~10% fragment lengths).
Below 0.35sec fragment lengths, communication lags
begin to dominate. Newly-prompted audio arrives about
1.5 fragment-lengths after the edge sends the prompt, a
delay that can be compensatorily reduced with fragment
length and covered by built-in queue buildup/runout on
A100/H100-class VM hardware. Lags are acceptable for
testing, where stitched data can be saved for annotation,
but is unacceptable for casual listening. Aside from VM
compute power-ups, samples may also be globally
stretched (~0.8x slomo) to cover lags and prepare a short
queue for prompt switches.

5.3 Development Challenges

●​MusicGen Location: Runs on local machine, but slow,
low scalability. Forced onto VM.

●​MusicGen Input: requires text, doesn’t take context
without extensive under-the-hood work. Limited scope to
semantic classification prompt injection.

●​Encoder Inference: Jetson Nano locally runs Python 3.6
and comparatively outdated versions of Pytorch/Cuda, so
pipeline adaptations must be carefully made to avoid
offline training to Jetson inference congruence.

●​Prompt Engineering: Transition disparity effects can be
partially smoothed with careful lead-in/out commands &
transition timing alignment. See appendix A.2.1 for
detailed prompt info.

●​Network Streaming: Three-node streaming proves
challenging for queue / worker management. Without
effective queue & worker dynamics, asynchronous threads
produce disordered queue on transitions. Streaming
system centrally facilitated by local streaming client
(music player).

5.4 Discussion / Insights Gained

Through CNN & initial SigLIP training results, smooth
activity-sensitive semantic prompting has proven to be a
manageable goal, but even with careful base prompt
engineering, affecting smooth transitions will likely
require forward-pass modification to MusicGen’s decoder
context tokens to accept previous-segment context tokens.

6. Future Work (Ordered by Priority)

●​ Smooth Activity Transitions: previous-context
provision to token-audio decoder (MusicGen fork)

●​ Latency Minimization: Increase VM compute power
(ex streaming app: H200 w/800 fp16 TOPS! [5]).
Investigate communication costs & network variants.

●​ Product Design: Value vs Cost Study, Addressable
Markets & Technology Orientation. Monetization.

●​ Build out Data Acquisition w/target device (Fig. 6.1)
●​ Develop SigLIP variational inference: train w/acquired

data, introduce synthetic chaos in annotations.
●​ Fine-grained sensitivity: Encoder+prompt embedding

input as opposed to text prompt (large-scale SigLIP
training, MusicGen fork): Smooth encoder embedding
changes (as opposed to stark transitions in activity
classifications) will produce more subtle differences in
MusicGen passes while maintaining interpretability.

●​ Personalized fine-tuning: engagement/feedback RL
●​ Activity deviance detection & query initiation (Stat. /

DL frameworks) for large-scale streaming

7. Conclusion
Development progress on MUSE validates the

feasibility of real-time, activity-aware music generation
on a split edge–cloud stack. This study effectively meets
the primary academic study goals: A custom
0.5M-parameter CNN running on a Jetson Nano reliably
classifies nine wrist-sensor activities at ~85 % macro-F1,
prompting MusicGen-small to stream activity-sensitive
music into a local device, limiting new-activity to
new-music latency to roughly 1.5s on a V100 (likely
below 0.75s on newer A100/H100 GPUs). The system is
structured to deliver uninterrupted playback through
queue management & overlap-additive mixing, promoting
nimble edge-situated ML-driven activity entrainment.
Although limitations to transition smoothness and stream
lags currently exist, paths forward on both fronts have
been identified to guarantee that MUSE will usher in a
new paradigm of user-sensitive musical expression.

6. Acknowledgements

Special thanks to Professor Zoran Kostic, Devika
Gumaste, & Ian Li for their guidance & material support
throughout study development.

Thanks to the Meta Research group and Hugginface
team (especially Sanchit Gandhi, now at Mistral) for
publicizing their research and promoting AI accessibility.

7. References

[1] L. McHugh, “Project report,” Google Docs, 13 May
2025. [Online]. Available:
https://docs.google.com/document/d/1zrKnF0ciJ9SkFMEf
H6NLzc4ACPADLBZMTX92izYoTfI . Accessed: 13
May 2025.

[2] L. McHugh, “Project presentation,” Google Slides, 13
May 2025. [Online]. Available:
https://docs.google.com/presentation/d/1A4nk4Ospce7u2
O_nVVZyAI0OlnZDigZH9pl_1U1-LgY . Accessed: 13
May 2025.

[3] L. McHugh, “Project proposal document,” Google
Docs, 2025. [Online]. Available:
https://docs.google.com/document/d/1ysuf-gNWOS9CF6
A7tQjX72crqGVqCAQJkAoN8FW9xHg . Accessed: 13
May 2025.

[4] Facebook Research, “MusicGen model card,” GitHub
repository, 2023. [Online]. Available:
https://github.com/facebookresearch/audiocraft/blob/main
/model_cards/MUSICGEN_MODEL_CARD.md .
Accessed: 13 May 2025.

[5] S. Gandhi, “MusicGen streaming app,” Hugging Face
Spaces, 2024. [Online]. Available:
https://huggingface.co/spaces/sanchit-gandhi/musicgen-str
eaming . Accessed: 13 May 2025.

[6] Google Research, “SigLIP2 zero-shot image
classification,” Hugging Face Collections, 2024. [Online].
Available:
https://huggingface.co/collections/google/siglip2-67b5dce
f38c175486e240107 . Accessed: 13 May 2025.

[7] Apple Inc., “Core ML.” [Online]. Available:
https://developer.apple.com/documentation/coreml .
Accessed: January 2025.

[8] u/spotify community, “Spotify’s AI playlist generator,”
Reddit, forum post, 2025. [Online]. Available:
https://www.reddit.com/r/spotify/comments/1fxxboq/lets_
talk_about_ai_playlists/ . Accessed: 13 May 2025.

[9] Data Science Dojo, “State of generative music and
audio-generative architectures,” blog article, 2024.
[Online]. Available:
https://datasciencedojo.com/blog/5-ai-music-generation-m
odels/ . Accessed: February 2025.

[10] J. DiCarlo et al., “Work on human visual-perceptive
control,” OpenReview, preprint, 2023. [Online].
Available: https://openreview.net/pdf?id=5GmTI4LNqX .
Accessed: January 2025.

[11] MIT Media Lab, “Semantic synth programming,”
research publication, 2023. [Online]. Available:
https://www.media.mit.edu/publications/ctag-neurips/ .
Accessed: January 2025.

[12] A. Jafari, M. Khalighinejad, and N. Mesgarani,
“BCI-augmented attentional audio control,” *Adv. Sci.*,
vol. 11, no. 9, p. 2401379, 2024. [Online]. Available:
https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/
advs.202401379 . Accessed: January 2025.

​

https://docs.google.com/document/d/1zrKnF0ciJ9SkFMEfH6NLzc4ACPADLBZMTX92izYoTfI
https://docs.google.com/document/d/1zrKnF0ciJ9SkFMEfH6NLzc4ACPADLBZMTX92izYoTfI
https://docs.google.com/presentation/d/1A4nk4Ospce7u2O_nVVZyAI0OlnZDigZH9pl_1U1-LgY
https://docs.google.com/presentation/d/1A4nk4Ospce7u2O_nVVZyAI0OlnZDigZH9pl_1U1-LgY
https://docs.google.com/document/d/1ysuf-gNWOS9CF6A7tQjX72crqGVqCAQJkAoN8FW9xHg
https://docs.google.com/document/d/1ysuf-gNWOS9CF6A7tQjX72crqGVqCAQJkAoN8FW9xHg
https://github.com/facebookresearch/audiocraft/blob/main/model_cards/MUSICGEN_MODEL_CARD.md
https://github.com/facebookresearch/audiocraft/blob/main/model_cards/MUSICGEN_MODEL_CARD.md
https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming
https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming
https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107
https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107
https://developer.apple.com/documentation/coreml
https://www.reddit.com/r/spotify/comments/1fxxboq/lets_talk_about_ai_playlists/
https://www.reddit.com/r/spotify/comments/1fxxboq/lets_talk_about_ai_playlists/
https://datasciencedojo.com/blog/5-ai-music-generation-models/
https://datasciencedojo.com/blog/5-ai-music-generation-models/
https://openreview.net/pdf?id=5GmTI4LNqX
https://www.media.mit.edu/publications/ctag-neurips/
https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/advs.202401379
https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/advs.202401379

8. Appendix

8.1 Individual Student Contribution

Liam McHugh (lm3963) completed all work individually.

8.2 Support Material

Figure A.2.1 Prompt Style Customizations.

A.2.2 Complete Example Prompt:
“Chill techno music. Current activity: Working at Desk. The
listener is 34 years old, 182 cm tall, and weighs 78.0 kg. Heart
rate is 64 bpm. Compose music that reflects the listeners style
and physiological state. The track should begin with a seamless
lead-in, evolving naturally from previous activity and ending
naturally for the next activity.” See Appendix Fig. A.2.1 for
customization details

Figure A.2.3 MusicGen Quantization & Storage Reqs

